On the Exponent of the All Pairs Shortest Path Problem

نویسندگان

  • Noga Alon
  • Zvi Galil
  • Oded Margalit
چکیده

The upper bound on the exponent, ω, of matrix multiplication over a ring that was three in 1968 has decreased several times and since 1986 it has been 2.376. On the other hand, the exponent of the algorithms known for the all pairs shortest path problem has stayed at three all these years even for the very special case of directed graphs with uniform edge lengths. In this paper we give an algorithm of time O ( n log n ) , ν = (3 + ω)/2, for the case of edge lengths in {−1, 0, 1}. Thus, for the current known bound on ω, we get a bound on the exponent, ν < 2.688. In case of integer edge lengths with absolute value bounded above by M , the time bound is O ( (Mn) log n ) and the exponent is less than 3 for M = O(n), for α < 0.116 and the current bound on ω.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

الگوریتم مستطیل آبشاری و ماتریس انتقال در شبکه های کوتاه ترین مسیر بادور

Shortest path problem is among the most interesting problems in the field of graph and network theory. There are many efficient matrix based algorithms for detecting of shortest path and distance between all pairs of this problem in literature. In this paper, a new exact algorithm, named Cascade Rectangle Algorithm, is presented by using main structure of previous exact algorithms and developin...

متن کامل

The Lagrangian Relaxation Method for the Shortest Path Problem Considering Transportation Plans and Budgetary Constraint

In this paper, a constrained shortest path problem (CSP) in a network is investigated, in which some special plans for each link with corresponding pre-determined costs as well as reduction values in the link travel time are considered. The purpose is to find a path and selecting the best plans on its links, to improve the travel time as most as possible, while the costs of conducting plans do ...

متن کامل

Two optimal algorithms for finding bi-directional shortest path design problem in a block layout

In this paper, Shortest Path Design Problem (SPDP) in which the path is incident to all cells is considered. The bi-directional path is one of the known types of configuration of networks for Automated Guided Vehi-cles (AGV).To solve this problem, two algorithms are developed. For each algorithm an Integer Linear Pro-gramming (ILP) is determined. The objective functions of both algorithms are t...

متن کامل

A New Algorithm for the Discrete Shortest Path Problem in a Network Based on Ideal Fuzzy Sets

A shortest path problem is a practical issue in networks for real-world situations. This paper addresses the fuzzy shortest path (FSP) problem to obtain the best fuzzy path among fuzzy paths sets. For this purpose, a new efficient algorithm is introduced based on a new definition of ideal fuzzy sets (IFSs) in order to determine the fuzzy shortest path. Moreover, this algorithm is developed for ...

متن کامل

On the Shoshan-Zwick Algorithm for the All-Pairs Shortest Path Problem

The Shoshan-Zwick algorithm solves the all pairs shortest paths problem in undirected graphs with integer edge costs in the range {1, 2, . . . ,M}. It runs in Õ(M · n) time, where n is the number of vertices, M is the largest integer edge cost, and ω < 2.3727 is the exponent of matrix multiplication. It is the fastest known algorithm for this problem. This paper points out the erroneous behavio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Syst. Sci.

دوره 54  شماره 

صفحات  -

تاریخ انتشار 1991